Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 201 - 225 of 663 results
201.

Advances in Ophthalmic Optogenetics: Approaches and Applications.

blue Cryptochromes Review
Biomolecules, 8 Feb 2022 DOI: 10.3390/biom12020269 Link to full text
Abstract: Recent advances in optogenetics hold promise for vision restoration in degenerative eye diseases. Optogenetics refers to techniques that use light to control the cellular activity of targeted cells. Although optogenetics is a relatively new technology, multiple therapeutic options are already being explored in pre-clinical and phase I/II clinical trials with the aim of developing novel, safe, and effective treatments for major blinding eye diseases, such as glaucoma and retinitis pigmentosa. Optogenetic approaches to visual restoration are primarily aimed at replacing lost or dysfunctional photoreceptors by inserting light-sensitive proteins into downstream retinal neurons that have no intrinsic light sensitivity. Such approaches are attractive because they are agnostic to the genetic causes of retinal degeneration, which raises hopes that all forms of retinal dystrophic and degenerative diseases could become treatable. Optogenetic strategies can also have a far-reaching impact on translational research by serving as important tools to study the pathogenesis of retinal degeneration and to identify clinically relevant therapeutic targets. For example, the CRY-CIBN optogenetic system has been recently applied to animal models of glaucoma, suggesting a potential role of OCRL in the regulation of intraocular pressure in trabecular meshwork. As optogenetic strategies are being intensely investigated, it appears crucial to consider the opportunities and challenges such therapies may offer. Here, we review the more recent promising optogenetic molecules, vectors, and applications of optogenetics for the treatment of retinal degeneration and glaucoma. We also summarize the preliminary results of ongoing clinical trials for visual restoration.
202.

Oncogenic protein condensates modulate cell signal perception and drug tolerance.

blue CRY2/CRY2 iLID H3122 STE-1 Signaling cascade control
bioRxiv, 4 Feb 2022 DOI: 10.1101/2022.02.02.478845 Link to full text
Abstract: Drug resistance remains a central challenge towards durable cancer therapy, including for cancers driven by the EML4-ALK oncogene. EML4-ALK and related fusion oncogenes form cytoplasmic protein condensates that transmit oncogenic signals through the Ras/Erk pathway. However, whether such condensates play a role in drug response or resistance development is unclear. Here, we applied optogenetic functional profiling to examine how EML4-ALK condensates impact signal transmission through transmembrane receptor tyrosine kinases (RTKs), a common route of resistance signaling. We found that condensates dramatically suppress signaling through activated RTKs including EGFR. Conversely, ALK inhibition restored and hypersensitized RTK signals. Modulation of RTK sensitivity occurred because EML4-ALK condensates sequestered downstream adapters that are required to transduce signals from both EML4-ALK and ligand-stimulated RTKs. Strikingly, EGFR hypersensitization resulted in rapid and pulsatile Erk signal reactivation within 10s of minutes of drug addition. EGFR reactivation originated from paracrine signals from neighboring apoptotic cells, and reactivation could be blocked by inhibition of either EGFR or matrix metalloproteases. Paracrine signals promoted survival during ALK inhibition, and blockade of paracrine signals accelerated cell killing and suppressed drug tolerance. Our results uncover a regulatory role for protein condensates in cancer signaling and drug response and demonstrate the potential of optogenetic profiling for drug discovery based on functional biomarkers in cancer cells.
203.

Optogenetic and Chemical Induction Systems for Regulation of Transgene Expression in Plants: Use in Basic and Applied Research.

blue green red Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
Int J Mol Sci, 3 Feb 2022 DOI: 10.3390/ijms23031737 Link to full text
Abstract: Continuous and ubiquitous expression of foreign genes sometimes results in harmful effects on the growth, development and metabolic activities of plants. Tissue-specific promoters help to overcome this disadvantage, but do not allow one to precisely control transgene expression over time. Thus, inducible transgene expression systems have obvious benefits. In plants, transcriptional regulation is usually driven by chemical agents under the control of chemically-inducible promoters. These systems are diverse, but usually contain two elements, the chimeric transcription factor and the reporter gene. The commonly used chemically-induced expression systems are tetracycline-, steroid-, insecticide-, copper-, and ethanol-regulated. Unlike chemical-inducible systems, optogenetic tools enable spatiotemporal, quantitative and reversible control over transgene expression with light, overcoming limitations of chemically-inducible systems. This review updates and summarizes optogenetic and chemical induction methods of transgene expression used in basic plant research and discusses their potential in field applications.
204.

Optophysiology: Illuminating cell physiology with optogenetics.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Physiol Rev, 24 Jan 2022 DOI: 10.1152/physrev.00021.2021 Link to full text
Abstract: Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology") and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
205.

Mechanical strain stimulates COPII-dependent trafficking via Rac1.

blue CRY2/CIB1 HeLa Control of cytoskeleton / cell motility / cell shape Control of vesicular transport
bioRxiv, 23 Jan 2022 DOI: 10.1101/2022.01.23.477215 Link to full text
Abstract: Secretory trafficking from the endoplasmic reticulum (ER) is subject to regulation by extrinsic and intrinsic factors. While much of the focus has been on biochemical triggers, little is known whether and how the ER is subject to regulation by mechanical signals. Here, we show that COPII-dependent ER-export is regulated by mechanical strain. Mechanotransduction to the ER was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulate ER-to-Golgi transport. Altogether, we establish an unprecedented link between mechanical strain and export from the ER.
206.

Wnt Signaling Rescues Amyloid Beta-Induced Gut Stem Cell Loss.

blue CRY2/CRY2 D. melanogaster in vivo Signaling cascade control
Cells, 14 Jan 2022 DOI: 10.3390/cells11020281 Link to full text
Abstract: Patients with Alzheimer's disease suffer from a decrease in brain mass and a prevalence of amyloid-β plaques. These plaques are thought to play a role in disease progression, but their exact role is not entirely established. We developed an optogenetic model to induce amyloid-β intracellular oligomerization to model distinct disease etiologies. Here, we examine the effect of Wnt signaling on amyloid in an optogenetic, Drosophila gut stem cell model. We observe that Wnt activation rescues the detrimental effects of amyloid expression and oligomerization. We analyze the gene expression changes downstream of Wnt that contribute to this rescue and find changes in aging related genes, protein misfolding, metabolism, and inflammation. We propose that Wnt expression reduces inflammation through repression of Toll activating factors. We confirm that chronic Toll activation reduces lifespan, but a decrease in the upstream activator Persephone extends it. We propose that the protective effect observed for lithium treatment functions, at least in part, through Wnt activation and the inhibition of inflammation.
207.

Towards translational optogenetics.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Nat Biomed Eng, 13 Jan 2022 DOI: 10.1038/s41551-021-00829-3 Link to full text
Abstract: Optogenetics is widely used to interrogate the neural circuits underlying disease and has most recently been harnessed for therapeutic applications. The optogenetic toolkit consists of light-responsive proteins that modulate specific cellular functions, vectors for the delivery of the transgenes that encode the light-responsive proteins to targeted cellular populations, and devices for the delivery of light of suitable wavelengths at effective fluence rates. A refined toolkit with a focus towards translational uses would include efficient and safer viral and non-viral gene-delivery vectors, increasingly red-shifted photoresponsive proteins, nanomaterials that efficiently transduce near-infrared light deep into tissue, and wireless implantable light-delivery devices that allow for spatiotemporally precise interventions at clinically relevant tissue depths. In this Review, we examine the current optogenetics toolkit and the most notable preclinical and translational uses of optogenetics, and discuss future methodological and translational developments and bottlenecks.
208.

Optogenetic approaches in biotechnology and biomaterials.

blue cyan green near-infrared red violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes Review
Trends Biotechnol, 11 Jan 2022 DOI: 10.1016/j.tibtech.2021.12.007 Link to full text
Abstract: Advances in genetic engineering, combined with the development of optical technologies, have allowed optogenetics to broaden its area of possible applications in recent years. However, the application of optogenetic tools in industry, including biotechnology and the production of biomaterials, is still limited, because each practical task requires the engineering of a specific optogenetic system. In this review, we discuss recent advances in the use of optogenetic tools in the production of biofuels and valuable chemicals, the synthesis of biomedical and polymer materials, and plant agrobiology. We also offer a comprehensive analysis of the properties and industrial applicability of light-controlled and other smart biomaterials. These data allow us to outline the prospects for the future use of optogenetics in bioindustry.
209.

Toward Multiplexed Optogenetic Circuits.

blue green red UV violet Cryptochromes Cyanobacteriochromes LOV domains Phytochromes UV receptors Review
Front Bioeng Biotechnol, 5 Jan 2022 DOI: 10.3389/fbioe.2021.804563 Link to full text
Abstract: Owing to its ubiquity and easy availability in nature, light has been widely employed to control complex cellular behaviors. Light-sensitive proteins are the foundation to such diverse and multilevel adaptive regulations in a large range of organisms. Due to their remarkable properties and potential applications in engineered systems, exploration and engineering of natural light-sensitive proteins have significantly contributed to expand optogenetic toolboxes with tailor-made performances in synthetic genetic circuits. Progressively, more complex systems have been designed in which multiple photoreceptors, each sensing its dedicated wavelength, are combined to simultaneously coordinate cellular responses in a single cell. In this review, we highlight recent works and challenges on multiplexed optogenetic circuits in natural and engineered systems for a dynamic regulation breakthrough in biotechnological applications.
210.

Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins.

blue CRY2/CIB1 PAL VVD HEK293T HeLa Transgene expression Epigenetic modification Endogenous gene expression
Nat Biotechnol, 3 Jan 2022 DOI: 10.1038/s41587-021-01112-1 Link to full text
Abstract: RNA-binding proteins (RBPs) play an essential role in regulating the function of RNAs in a cellular context, but our ability to control RBP activity in time and space is limited. Here, we describe the engineering of LicV, a photoswitchable RBP that binds to a specific RNA sequence in response to blue light irradiation. When fused to various RNA effectors, LicV allows for optogenetic control of RNA localization, splicing, translation and stability in cell culture. Furthermore, LicV-assisted CRISPR-Cas systems allow for efficient and tunable photoswitchable regulation of transcription and genomic locus labeling. These data demonstrate that the photoswitchable RBP LicV can serve as a programmable scaffold for the spatiotemporal control of synthetic RNA effectors.
211.

Optogenetic Methods to Control Tissue Mechanics in Drosophila.

blue CRY2/CIB1 D. melanogaster in vivo
Methods Mol Biol, 2022 DOI: 10.1007/978-1-0716-2541-5_13 Link to full text
Abstract: Optogenetics is a powerful technique that allows the control of protein function with high spatiotemporal precision using light. Here, we describe the application of this method to control tissue mechanics during Drosophila embryonic development. We detail optogenetic protocols to either increase or decrease cell contractility and analyze the interplay between cell-cell interaction, tissue geometry, and force transmission during gastrulation.
212.

Optogenetic Control of Membrane Trafficking Using Light-Activated Reversible Inhibition by Assembly Trap of Intracellular Membranes (IM-LARIAT).

blue CRY2/CIB1 Cos-7
Methods Mol Biol, 2022 DOI: 10.1007/978-1-0716-2209-4_20 Link to full text
Abstract: Intracellular membrane trafficking is a dynamic and complex cellular process. To study membrane trafficking with a high spatiotemporal resolution, we present an optogenetic method based on a blue-light inducible oligomerization of Rab GTPases, termed light-activated reversible inhibition by assembly trap of intracellular membranes (IM-LARIAT). In this chapter, we focus on the optical disruption of the dynamics and functions of previously studied intracellular membrane trafficking events, including transferrin recycling and growth cone regulation in relation to specific Rab GTPases. To aid general application, we provide a detailed description of transfection, imaging with a confocal microscope, and analysis of data.
213.

Optogenetic activation of intracellular signaling based on light-inducible protein-protein homo-interactions.

blue red Cryptochromes LOV domains Phytochromes Review
Neural Regen Res, Jan 2022 DOI: 10.4103/1673-5374.314293 Link to full text
Abstract: Dynamic protein-protein interactions are essential for proper cell functioning. Homo-interaction events-physical interactions between the same type of proteins-represent a pivotal subset of protein-protein interactions that are widely exploited in activating intracellular signaling pathways. Capacities of modulating protein-protein interactions with spatial and temporal resolution are greatly desired to decipher the dynamic nature of signal transduction mechanisms. The emerging optogenetic technology, based on genetically encoded light-sensitive proteins, provides promising opportunities to dissect the highly complex signaling networks with unmatched specificity and spatiotemporal precision. Here we review recent achievements in the development of optogenetic tools enabling light-inducible protein-protein homo-interactions and their applications in optical activation of signaling pathways.
214.

Substratum stiffness regulates Erk signaling dynamics through receptor-level control.

blue CRY2/CRY2 iLID MCF10A Signaling cascade control
Cell Rep, 28 Dec 2021 DOI: 10.1016/j.celrep.2021.110181 Link to full text
Abstract: The EGFR/Erk pathway is triggered by extracellular ligand stimulation, leading to stimulus-dependent dynamics of pathway activity. Although mechanical properties of the microenvironment also affect Erk activity, their effects on Erk signaling dynamics are poorly understood. Here, we characterize how the stiffness of the underlying substratum affects Erk signaling dynamics in mammary epithelial cells. We find that soft microenvironments attenuate Erk signaling, both at steady state and in response to epidermal growth factor (EGF) stimulation. Optogenetic manipulation at multiple signaling nodes reveals that intracellular signal transmission is largely unaffected by substratum stiffness. Instead, we find that soft microenvironments decrease EGF receptor (EGFR) expression and alter the amount and spatial distribution of EGF binding at cell membranes. Our data demonstrate that the mechanical microenvironment tunes Erk signaling dynamics via receptor-ligand interactions, underscoring how multiple microenvironmental signals are jointly processed through a highly conserved pathway that regulates tissue development, homeostasis, and disease progression.
215.

Stress ball morphogenesis: How the lizard builds its lung.

blue CRY2/CRY2 C2C12 Immediate control of second messengers
Sci Adv, 22 Dec 2021 DOI: 10.1126/sciadv.abk0161 Link to full text
Abstract: The function of the lung is closely coupled to its structural anatomy, which varies greatly across vertebrates. Although architecturally simple, a complex pattern of airflow is thought to be achieved in the lizard lung due to its cavernous central lumen and honeycomb-shaped wall. We find that the wall of the lizard lung is generated from an initially smooth epithelial sheet, which is pushed through holes in a hexagonal smooth muscle meshwork by forces from fluid pressure, similar to a stress ball. Combining transcriptomics with time-lapse imaging reveals that the hexagonal meshwork self-assembles in response to circumferential and axial stresses downstream of pressure. A computational model predicts the pressure-driven changes in epithelial topology, which we probe using optogenetically driven contraction of 3D-printed engineered muscle. These results reveal the physical principles used to sculpt the unusual architecture of the lizard lung, which could be exploited as a novel strategy to engineer tissues.
216.

Temperature-responsive optogenetic probes of cell signaling.

blue BcLOV4 CRY2/CRY2 iLID HEK293T NIH/3T3 Schneider 2 zebrafish in vivo Signaling cascade control
Nat Chem Biol, 22 Dec 2021 DOI: 10.1038/s41589-021-00917-0 Link to full text
Abstract: We describe single-component optogenetic probes whose activation dynamics depend on both light and temperature. We used the BcLOV4 photoreceptor to stimulate Ras and phosphatidyl inositol-3-kinase signaling in mammalian cells, allowing activation over a large dynamic range with low basal levels. Surprisingly, we found that BcLOV4 membrane translocation dynamics could be tuned by both light and temperature such that membrane localization spontaneously decayed at elevated temperatures despite constant illumination. Quantitative modeling predicted BcLOV4 activation dynamics across a range of light and temperature inputs and thus provides an experimental roadmap for BcLOV4-based probes. BcLOV4 drove strong and stable signal activation in both zebrafish and fly cells, and thermal inactivation provided a means to multiplex distinct blue-light sensitive tools in individual mammalian cells. BcLOV4 is thus a versatile photosensor with unique light and temperature sensitivity that enables straightforward generation of broadly applicable optogenetic tools.
217.

Directed evolution approaches for optogenetic tool development.

blue green near-infrared red Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes Review
Biochem Soc Trans, 17 Dec 2021 DOI: 10.1042/bst20210700 Link to full text
Abstract: Photoswitchable proteins enable specific molecular events occurring in complex biological settings to be probed in a rapid and reversible fashion. Recent progress in the development of photoswitchable proteins as components of optogenetic tools has been greatly facilitated by directed evolution approaches in vitro, in bacteria, or in yeast. We review these developments and suggest future directions for this rapidly advancing field.
218.

CeLINC, a fluorescence-based protein-protein interaction assay in Caenorhabditis elegans.

blue CRY2/CIB1 CRY2olig C. elegans in vivo Organelle manipulation
Genetics, 10 Dec 2021 DOI: 10.1093/genetics/iyab163 Link to full text
Abstract: Interactions among proteins are fundamental for life and determining whether two particular proteins physically interact can be essential for fully understanding a protein's function. We present Caenorhabditis elegans light-induced coclustering (CeLINC), an optical binary protein-protein interaction assay to determine whether two proteins interact in vivo. Based on CRY2/CIB1 light-dependent oligomerization, CeLINC can rapidly and unambiguously identify protein-protein interactions between pairs of fluorescently tagged proteins. A fluorescently tagged bait protein is captured using a nanobody directed against the fluorescent protein (GFP or mCherry) and brought into artificial clusters within the cell. Colocalization of a fluorescently tagged prey protein in the cluster indicates a protein interaction. We tested the system with an array of positive and negative reference protein pairs. Assay performance was extremely robust with no false positives detected in the negative reference pairs. We then used the system to test for interactions among apical and basolateral polarity regulators. We confirmed interactions seen between PAR-6, PKC-3, and PAR-3, but observed no physical interactions among the basolateral Scribble module proteins LET-413, DLG-1, and LGL-1. We have generated a plasmid toolkit that allows use of custom promoters or CRY2 variants to promote flexibility of the system. The CeLINC assay is a powerful and rapid technique that can be widely applied in C. elegans due to the universal plasmids that can be used with existing fluorescently tagged strains without need for additional cloning or genetic modification of the genome.
219.

Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis.

blue CRY2/CIB1 iLID MDCK Control of cytoskeleton / cell motility / cell shape
Nat Commun, 8 Dec 2021 DOI: 10.1038/s41467-021-27458-3 Link to full text
Abstract: Actomyosin contractility generated cooperatively by nonmuscle myosin II and actin filaments plays essential roles in a wide range of biological processes, such as cell motility, cytokinesis, and tissue morphogenesis. However, subcellular dynamics of actomyosin contractility underlying such processes remains elusive. Here, we demonstrate an optogenetic method to induce relaxation of actomyosin contractility at the subcellular level. The system, named OptoMYPT, combines a protein phosphatase 1c (PP1c)-binding domain of MYPT1 with an optogenetic dimerizer, so that it allows light-dependent recruitment of endogenous PP1c to the plasma membrane. Blue-light illumination is sufficient to induce dephosphorylation of myosin regulatory light chains and a decrease in actomyosin contractile force in mammalian cells and Xenopus embryos. The OptoMYPT system is further employed to understand the mechanics of actomyosin-based cortical tension and contractile ring tension during cytokinesis. We find that the relaxation of cortical tension at both poles by OptoMYPT accelerated the furrow ingression rate, revealing that the cortical tension substantially antagonizes constriction of the cleavage furrow. Based on these results, the OptoMYPT system provides opportunities to understand cellular and tissue mechanics.
220.

Formation of nuclear condensates by the Mediator complex subunit Med15 in mammalian cells.

blue CRY2/CRY2 NIH/3T3 Organelle manipulation
BMC Biol, 17 Nov 2021 DOI: 10.1186/s12915-021-01178-y Link to full text
Abstract: The Mediator complex is an evolutionarily conserved multi-subunit protein complex that plays major roles in transcriptional activation and is essential for cell growth, proliferation, and differentiation. Recent studies revealed that some Mediator subunits formed nuclear condensates that may facilitate enhancer-promoter interactions and gene activation. The assembly, regulation, and functions of these nuclear condensates remain to be further understood.
221.

Optogenetics in bacteria - applications and opportunities.

blue green near-infrared red BLUF domains Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
FEMS Microbiol Rev, 13 Nov 2021 DOI: 10.1093/femsre/fuab055 Link to full text
Abstract: Optogenetics holds the promise of controlling biological processes with superb temporal and spatial resolution at minimal perturbation. Although many of the light-reactive proteins used in optogenetic systems are derived from prokaryotes, applications were largely limited to eukaryotes for a long time. In recent years, however, an increasing number of microbiologists use optogenetics as a powerful new tool to study and control key aspects of bacterial biology in a fast and often reversible manner. After a brief discussion of optogenetic principles, this review provides an overview of the rapidly growing number of optogenetic applications in bacteria, with a particular focus on studies venturing beyond transcriptional control. To guide future experiments, we highlight helpful tools, provide considerations for successful application of optogenetics in bacterial systems, and identify particular opportunities and challenges that arise when applying these approaches in bacteria.
222.

Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety.

blue CRY2/CIB1 iLID human T cells Jurkat mouse T cells Signaling cascade control
Nat Nanotechnol, 25 Oct 2021 DOI: 10.1038/s41565-021-00982-5 Link to full text
Abstract: Chimeric antigen receptor (CAR) T cell-based immunotherapy, approved by the US Food and Drug Administration, has shown curative potential in patients with haematological malignancies. However, owing to the lack of control over the location and duration of the anti-tumour immune response, CAR T cell therapy still faces safety challenges arising from cytokine release syndrome and on-target, off-tumour toxicity. Herein, we present the design of light-switchable CAR (designated LiCAR) T cells that allow real-time phototunable activation of therapeutic T cells to precisely induce tumour cell killing. When coupled with imaging-guided, surgically removable upconversion nanoplates that have enhanced near-infrared-to-blue upconversion luminescence as miniature deep-tissue photon transducers, LiCAR T cells enable both spatial and temporal control over T cell-mediated anti-tumour therapeutic activity in vivo with greatly mitigated side effects. Our nano-optogenetic immunomodulation platform not only provides a unique approach to interrogate CAR-mediated anti-tumour immunity, but also sets the stage for developing precision medicine to deliver personalized anticancer therapy.
223.

Aberrant Phase Separation of FUS Leads to Lysosome Sequestering and Acidification.

blue CRY2/CRY2 HEK293 Organelle manipulation
Front Cell Dev Biol, 22 Oct 2021 DOI: 10.3389/fcell.2021.716919 Link to full text
Abstract: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that leads to the death of upper and lower motor neurons. While most cases of ALS are sporadic, some of the familial forms of the disease are caused by mutations in the gene encoding for the RNA-binding protein FUS. Under physiological conditions, FUS readily phase separates into liquid-like droplets in vivo and in vitro. ALS-associated mutations interfere with this process and often result in solid-like aggregates rather than fluid condensates. Yet, whether cells recognize and triage aberrant condensates remains poorly understood, posing a major barrier to the development of novel ALS treatments. Using a combination of ALS-associated FUS mutations, optogenetic manipulation of FUS condensation, chemically induced stress, and pH-sensitive reporters of organelle acidity, we systematically characterized the cause-effect relationship between the material state of FUS condensates and the sequestering of lysosomes. From our data, we can derive three conclusions. First, regardless of whether we use wild-type or mutant FUS, expression levels (i.e., high concentrations) play a dominant role in determining the fraction of cells having soluble or aggregated FUS. Second, chemically induced FUS aggregates recruit LAMP1-positive structures. Third, mature, acidic lysosomes accumulate only at FUS aggregates but not at liquid-condensates. Together, our data suggest that lysosome-degradation machinery actively distinguishes between fluid and solid condensates. Unraveling these aberrant interactions and testing strategies to manipulate the autophagosome-lysosome axis provides valuable clues for disease intervention.
224.

The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters.

blue green near-infrared red UV violet BLUF domains Cryptochromes Cyanobacteriochromes LOV domains Phytochromes UV receptors Review
Chem Rev, 20 Oct 2021 DOI: 10.1021/acs.chemrev.1c00194 Link to full text
Abstract: This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
225.

Optogenetic strategies for the control of gene expression in yeasts.

blue green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes LOV domains Phytochromes UV receptors Review
Biotechnol Adv, 28 Sep 2021 DOI: 10.1016/j.biotechadv.2021.107839 Link to full text
Abstract: Optogenetics involves the use of light to control cellular functions and has become increasingly popular in various areas of research, especially in the precise control of gene expression. While this technology is already well established in neurobiology and basic research, its use in bioprocess development is still emerging. Some optogenetic switches have been implemented in yeasts for different purposes, taking advantage of a wide repertoire of biological parts and relatively easy genetic manipulation. In this review, we cover the current strategies used for the construction of yeast strains to be used in optogenetically controlled protein or metabolite production, as well as the operational aspects to be considered for the scale-up of this type of process. Finally, we discuss the main applications of optogenetic switches in yeast systems and highlight the main advantages and challenges of bioprocess development considering future directions for this field.
Submit a new publication to our database